Catatan Sasongko

sbocheck /usr/sbo/repo exists and is not empty

Malam ini, ketika akan update SBo, ternyata tanpa disadari internet disconnect sebelumnya. bash-5.1# sbocheck Updating SlackBuilds tree... fatal: unable to look up github.com (port 9418) (Temporary failure in name resolution) Could not sync from git://github.com/Ponce/slackbuilds.git. Setelah internet tidak ada masalah, gantian sbotools-nya yang masalah bash-5.1# sbocheck /usr/sbo/repo exists and is not empty. Exiting. Baiklah, local repository-nya minta dikosongkan dulu bash-5.1# rm -r /usr/sbo/repo bash-5.1# sbosnap fetch Pulling SlackBuilds tree... Cloning into '/usr/sbo/repo'.

Burn iso ke dvd

Misal, file slackware64-live-current.iso akan di-burn ke DVD. DVD terdeteksi oleh sistem sebagai /dev/sr0. Command dijalankan root. $ growisofs -dvd-compat -Z /dev/sr0=slackware64-live-current.iso

Transfer file dengan lftp

Salah 1 akibat Work from Home a.k.a WfH adalah kapasitas storage laptop menjadi penuh. Semakin banyak file, semakin berkurang free space. Untuk menyiasatinya, ketika ada kesempatan bekerja di kantor, file-file tersebut ditransfer ke komputer kantor. Karena komputer kantor menggunakan Windows 7 yang mana saya tidak paham bagaimana cara file sharing-nya saya gunakan ftp. Mungkin karena sudah terlanjur nyaman memakai slackware, saya tidak mau ribet pengaturan ftpnya di komputer kantor. Serahkan saja ke bagian IT untuk installnya.

Median data dengan python

Misalkan akan dicari berapa median konsumsi alkohol perkapita? Jawabannya bisa diketahui dengan menggunakan fungsi describe() atau median() yang dimiliki pandas. #!/usr/bin/env python3 import pandas as pd # sumber data https://github.com/fivethirtyeight/data/blob/master/alcohol-consumption/drinks.csv # dengan editing header variabel data = pd.read_csv("../dataset/drinks.csv") # median print('median konsumsi bir adalah ',data['beer_servings'].median(),'kaleng') print('median konsumsi spirit adalah ', data['spirit_servings'].median()) print('median konsumsi anggur adalah ', data['wine_servings'].median(), 'gelas') print('median konsumsi alkohol murni adalah ', data['pure_alcohol'].median(), 'liter')

Mean data dengan python

Misalkan akan dicari berapa rerata konsumsi alkohol perkapita? Jawabannya bisa diketahui dengan menggunakan fungsi describe() atau mean() yang dimiliki pandas. #!/usr/bin/env python3 import pandas as pd # sumber data https://github.com/fivethirtyeight/data/blob/master/alcohol-consumption/drinks.csv # dengan editing header variabel data = pd.read_csv("../dataset/drinks.csv") # mean print('rerata konsumsi bir adalah ',data['beer_servings'].mean(),'kaleng') print('rerata konsumsi spirit adalah ', data['spirit_servings'].mean()) print('rerata konsumsi anggur adalah ', data['wine_servings'].mean(), 'gelas') print('rerata konsumsi alkohol murni adalah ', data['pure_alcohol'].mean(), 'liter')

Statistik deskriptif dengan python

Untuk menampilkan statistik deskriptif suatu data, bisa menggunakan fungsi describe() dari library yang dimiliki python yaitu pandas. Berikut ini akan ditampilkan deskripsi data konsumsi alkohol dunia. Sumber data : https://github.com/fivethirtyeight/data/blob/master/alcohol-consumption/drinks.csv Data tersebut memuat konsumsi alkohol perkapita dari 193 negara. Ada 4 variabel yaitu : beer_servings (konsumsi bir yang dinyatakan dalam kaleng) spirit_servings (konsumsi minuman beralkohol spirit; maaf, variabel ini masih belum penulis pahami sepenuhnya) wine_servings (konsumsi anggur yang dinyatakan dalam gelas) pure_alcohol (konsumsi alkohol murni yang dinyataksan dalam liter, nama variabel ini sudah penulis singkat) Adapun deskripsi yang ditampilkan adalah :

Mengetahui struktur dataset

Untuk menampilkan informasi struktur dataset dapat menggunakan fungsi info() dari pandas. Data diambil dari https://catalog.data.gov/dataset/alzheimers-disease-and-healthy-aging-data/ #!/usr/bin/env python3 import pandas as pd data = pd.read_csv("Alzheimer_s_Disease_and_Healthy_Aging_Data.csv") print(data.info()) Outputnya <class 'pandas.core.frame.DataFrame'> RangeIndex: 178539 entries, 0 to 178538 Data columns (total 39 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 RowId 178539 non-null object 1 YearStart 178539 non-null int64 2 YearEnd 178539 non-null int64 3 LocationAbbr 178539 non-null object 4 LocationDesc 178539 non-null object 5 Datasource 178539 non-null object 6 Class 178539 non-null object 7 Topic 178539 non-null object 8 Question 178539 non-null object 9 Response 0 non-null float64 10 Data_Value_Unit 178539 non-null object 11 DataValueTypeID 178539 non-null object 12 Data_Value_Type 178539 non-null object 13 Data_Value 120885 non-null float64 14 Data_Value_Alt 0 non-null float64 15 Data_Value_Footnote_Symbol 70619 non-null object 16 Data_Value_Footnote 70619 non-null object 17 Low_Confidence_Limit 120750 non-null float64 18 High_Confidence_Limit 120750 non-null float64 19 Sample_Size 0 non-null float64 20 StratificationCategory1 178539 non-null object 21 Stratification1 178539 non-null object 22 StratificationCategory2 178539 non-null object 23 Stratification2 178539 non-null object 24 StratificationCategory3 0 non-null float64 25 Stratification3 0 non-null float64 26 Geolocation 159375 non-null object 27 ClassID 178539 non-null object 28 TopicID 178539 non-null object 29 QuestionID 178539 non-null object 30 ResponseID 0 non-null float64 31 LocationID 178539 non-null int64 32 StratificationCategoryID1 178539 non-null object 33 StratificationID1 178539 non-null object 34 StratificationCategoryID2 178539 non-null object 35 StratificationID2 178539 non-null object 36 StratificationCategoryID3 0 non-null float64 37 StratificationID3 0 non-null float64 38 Report 0 non-null float64 dtypes: float64(12), int64(3), object(24) memory usage: 53.

Menggunakan wget prefix directory

Secara default, apabila menggunakan wget, file di-download ke direktori aktif. Dengan mengaktifkan prefix directory (-P), file tersebut bisa disimpan ke direktori lain. $ wget [url] -P [direktori] [url] : URL / alamat lengkap file yang akan di-download [direktori] : direktori tujuan

Mengetahui dimensi dataset python

Untuk mengetahui dimensi atau jumlah baris dan kolom dataset dapat menggunakan shape dari pandas. Data diambil dari https://catalog.data.gov/dataset/alzheimers-disease-and-healthy-aging-data/ import pandas as pd data = pd.read_csv("Alzheimer_s_Disease_and_Healthy_Aging_Data.csv") print(data.shape) Output: (178539, 39) Dari output tersebut diketahui dataset mempunyai 178539 baris dan 39 kolom.